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ABSTRACT

The influence of surface tension on solitary and cnoidal waves is
discussed. This problem was first considered by Korteweg and de Vries [1].
Shinbrot [2] attempted to derive Korteweg and de Vries results by a formal
perturbation expansion. However a part of his results is incorrect. 1In this
note an approach different from thoge in [1) and [2] is used to construct a

correct perturbation solution.
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SIGNIFICANCE AND EXPLANATION

In this note we present a perturbation solution for gravity capillary
waves in water of finite depth. The calculation is valid when both the
amplitude of the waves and the depth of the water are small. This problem was
first considered by Korteweg and de Vries ([1]. These authors showed that
waves of small amplitude in relatively shallow water can be described
approximately by a nonlinear differential equation. 1In addition Korteweg and
de Vries obtained periodic solutions of this equation in closed form. They
named these solutions cnoidal waves. Solitary waves are the limit of cnoidal
waves as the wavelength tends to infinity.

Shinbrot [2] attempted to derive Korteweg and de Vries results by a
formal perturbation expansion. However, a part of his results is incorrect,
because the possibility of a depression solitary wave was excluded by him.

In this note an approach different from those in [1] and (2] is used to
construct a perturbation solution which allows depression waves. The results

obtained agree with those presented by Korteweg and de Vries [2].

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A NOTE ON SOLITARY AND CNOIDAL WAVES WITH SURFACE TENSION
Jean-Marc Vanden-Broeck and M. C. Shen

§1. INTRODUCTION

In the present work we discuss the influence of surface tension on
solitary and cnoidal waves. Solitary waves with surface tension were first
considered by Korteweg and de Vries [1]., They showed that depression solitary
waves exist for sufficiently large values of the surface tension. Shinbrot
[2) attempted to study solitary waves with surface tension by a formal
perturbation expansion. However, a part of his results is incorrect, because
the possibility of a depression wave was excluded by him. In this note we use
an approach different from those in {1],[2] to construct a perturbation
solution which allows depression waves. In addition, the effect of surface
tension on cnoidal waves is also considered. The results obtained agree with
those presented by Korteweg and de Vries [1].

The problem is formulated in Section 2. The perturbation expansion for
solitary waves is derived in Section 3. Cnoidal waves with surface tension

are considered in Section 4.

§2. FORMULATION OF THE PROBLEM
The governing equations for the steady flow of an incompressible inviscid
fluid of constant density with surface tension in reference to a moving
coordinate system at a constant speed ¢ in the x-direction are the
following:
u; + v; =0, (1

p (utul + v'u;) = <p§ ¢ (2)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant Nos. MCS800-1960 and MCS-7927062, Mod. 1,
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D(u'v; + v*v;) = -p; - P9, (3)

subject to the boundary conditions

g2+ utgy - v* =0 at y = §¥%(x) (4)
p* = - (1 + C;2)3/2 at y = L*(x) (5)
ve =0 at y=20 . (6)

Here (u*,v*) is the velocity, P the constant density, p the pressure,
g the constant gravitational acceleration, y = {* the equation of the free
surface and T* the constant surface tension coefficient. Following Peters
and Stoker ([3]), we use x and the stream function ¢ as independent
variables, and transform the fluid domain to a fixed horizontal strip in the
x,V-plane. Furthermore, it is also more convenient to use u*, p* and the
so-called stream line function f* as dependent variables, where f£*
satisfies V¥(x,f*) = constant to define a stream line. If we introduce the
nondimensional variables

§ = x/h, n =y/ch, u=aut/c, v=v*t/c,

f=f*h, p= p*/pcz, A= gh/cz, T = T*/Pg'h2 .

where h is the equilibrium fluid depth, (1) to (6) become

v = -fnpg + fzpn ¢ =®C§ ™, (7)

ufEE + ung = -Afn - pn ., 0 <N, (8)

uf, =1, (9)

f=0, at N =0, -»<cf <>, (10)

p = “Te /(1 + f§)3/2 at n=1 -®»<cEcw, (11)

Assume A is close to some critical value £ and let

e=8 -1, o=£(c)V2, (12)
then (7) to (11) in terms of ¢ become

u, = -fnpo + fopn ’ (13)

-2-




E(uf  + uf.) = ef, - lfn - Py (14)

uf, =1, (15)
£=0, atn=0, (16)

- 2,3/2 -
p = -Tef /(1 + etl) atn=1. (17)

§3. SOLITARY WAVE SOLUTIONS

To solve (13) to (17), we assume

2

u u°+8u1+€u2+ eve (18)
£faf +EE +EE_+ vu (19)

0 1 2
p=p +€p +€2p + ses . (20)

0 1 2

vwhere

uo = 1, fo =7, Py = -2(n - 1) . (21)

Substitution of (18) to (21) in (13) to (17) will yield a sequence of
equations and boundary conditions for the successive approximations. The

equations for the first approximations are

Upg = = Pyg = 2,0 s (22)
1 - lf1n - p1n =0 , | (23)
u, + f1n =0, (24)
f1(0.0) =0, (25)
P1(°'0) =0 . (26)
From (21) to (22), we have
0. (27)

£iomn =

By integration and making use of (25), we obtain
f1° = a;(o)n ’

where a1(o) is to be determined. By integration again,

-3-




£, = a1(°)ﬂ + b,(n) .

1

b Here we assume that a1(o) +0 as 0+ ® or a1(a) is a periodic function
L

;! with period L and f 31(0)60 = 0. It follows that

- 0

= f‘ = 31(0)" . (28)

From (23), (24) and (26), we have

u, = -a1(6) ’ (29)
p,= (1~ £a1(0)](n - 1) . (30)
By substituting (28) to (30) in (22), it is found that
a;(c)(l -1)=0. (31)
If a;(o) 7 0, then
L =1, (32)

The equations for the second approximations are

Uy = 'fzu Pyt a;(d)n - a1(0)a;(0) ' (33)
a;(d)n = a,(O) - fzn “Poy ¢ (34)
2
fm tu, - a1(0) =0 , (35)
fz(o,O) =0, (36)
;ﬁ p, = -Ta;(o) at n=1, (37)
I+
r. where (28) to (30) and (32) have been used. As before we find that
- 3
J “ £, = a,(o)n - aj(a)n’/6 , (38)
- u, = -a_(0) + 32(0) + a"(o)n2/2 (39)
2 2 1 1 ’

P, = -a,(0)(n = 1) + a (6)(n = 1) + af(a@)(~T + nds6 - n%2+ 1/3) . (a0)

Substitution of (38) and (40) in (33) yields
A (1/3 - T)a;%o) = a;(O) - 3a,(6)a;(o) . (41)
) I1f we impose the condition a;(o), a;(a) +0 as 0 ** and a;(o) = 0, then

by integration we obtain
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a (@) = sech2(0/2)(1/3 - T) (42)
It follows from (19), (21), (28) and (42) that
£4 ~ h + h(1 - A)sech2(x/zn) (1 = M)/(1/3 - )1/ 2. (43)

If T < 1/3 and A < 1, there is a solitary wave of elevation. In this
case, c?> gh and the solitary wave moves at a supercritical speed. If
T > 1/3 and A > 1, there is a solitary wave of depression moving at a

subcritical speed units c?

< gh. We may define
a= [h(1-2)],

and (43) in terms of a becomes

£o~ n t a sech®(x/2) [+a/(1/3 - 1 /2, (44)
If we consider a periodic solution of (41), then by integration
(1/3 = M ia}(0)1 % = -a3(a) + al(o) + c.a (@) + c, . (45)

where c1, c2

cnoidal waves and will be discussed in the next section. Finally if

are two arbitrary constants. The periodic solutions are called

T = 1/3, then (41) becomes
a;(a)(I - 331(0)) =0 , (46)

and the only possible solution is a1(c) = 0.

§4. CNOIDAL WAVE SOLUTION
For a bounded, periodic solution of (45), it is necessary that the right
hand side of (45) must have three real simple zeros, and the solution will
occillate periodically between two of the zeros. Therefore, we rewrite (45)
in the form
(1/3 - T (a}(0)]1% = [h, - a ()] (a () - hlla () = Y] , (a7)

where h_, h

1 2 are the extremum values of 01(0) and

Y=1- hz - h, . (48)

1
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without loss of generality we shall assume that h1 and h2 satisfy the

inequality
1
(3-70-2m -n)>o0

Following Korteweg and de Vries [1] we introduce the parameter X and

write
a (o) = h cos’x + hsin’ . (49)
Substituting (49) into (47), we obtain
g E - (1- V2. (50)
Here B and K2 are defined by
(4 1 = 3T]1/2 (51)
h, - h
2 1 2
K h1 - (52)

We take the origin of O at a point where a1(o) attains the value

hye Thus integrating (50) we obtain

X
o= f dax

= BF(X,K) . (53)
0 (1 - Kk%sin%)

1/2

We can rewrite (53) in terms of Jacobian elliptic functions as
cos X = ¢cn % . (54)

Substituting (56) into (49) we have

2
a1(o) h2 + (h1 - hz)cn

It follows from (19), (21), (28) and (55) that

g
B ° (55)

]1/2

2(x
£#~ h + (1-A)bh, + (1-A)h(h = h,len ('51')[‘“1" Y)(1=A)/(1/3 = T) (56)

R W S ]




...........................

The wavelength L of the wave is given by

;'_ | . 1 - 37 1/2
o L ‘h[a(h1 YT “] F(X) , (57)
where
n/2
¥, (K) = (1-x%in%)"" 2% . (58)

0

The determination of the solutin is completed by imposing the condition
L
f a1(a)& = 0 where the integral is over a wavelength. Using (49), (50)
0
and (52) we have

n/2 h1c0|?x + hzain?x

DAGC 2 s ittt

0=28f ax
0 (1 - x%sin’) /2

2 = BYF (K) + (b, - VIE (K)] . (59)
g
E Here
S x/2
] B (0 =f (1 - K% 2 .
) 0
P Hence
: YF(K) + (h, = Y)E(K) =0 . (60)

The eight quantities A, h1, h,y Y, X L, T and B8 are related by the

P s i o

five equations (48), (51), (52), (57) and (60). If for instance A, L and

T are given the others can be found.

———

If L =%, relations (57), (52) (60) and (48) yield KX = 1, Yy = h2 =0
and hy = 1. The cnoidal wave reduces then to the solitary wave considered in

Section 3.

rdrhd SEEN o o g

. Por infinitesimal amplitude, equation (41) reduces to

P

(1/3 - T)l‘,'(d) = a;(a) . (61)

F The solution is

......
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é: a1(0) = h1cos(T - 1/3)-1/20 : (62)
g It follows from (19), (21), (28) and (62) that

‘ £* =h + h (1 - X)cos% (1 -0/ - 132, (63)
; If we introduce

3 k= (1 =0/ - 133, (64) <
! we have

' £ = h + hh (1 - A)cos Kx . (65)
; Relation (64) can be rewritten as

,

3 S ERET St RV (66)
- c

DU

The dispersion relation of linear sine waves is given by

1
I 2

. 2 g
- = 3 +
: c tanh xh(1 5

| (67)

In the limit as kKh + 0, (67) may be expanded as

2
f;~ 1+ - 1322+ 0ty . (68)

A comparison of (67) and (68) indicates that the cnoidal wave solution

overlaps the classical linear theory in the limit as the amplitude of the

- waves tends to zero.
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